
T R I U M P H S O F T W A R E

 Presents

TriDoor

Completely revised and refined!

 An On-Line Door Support Unit For use with Turbo Pascal 5.5, 6.0 and 7.0

 TriDoor Written by Christopher M. Russo TriComm Communications Support Written
by Jeremy H. DuBois

 TriDoor, TriComm (c)1993 Triumph Software, All Rights Reserved.

 Voice : (508)263-4247 (Business) / (508)263-8420 (Home)

 PCBoard is a Registered Trademark of Clark Development CO, Inc. QuickBBS is a Registered Trademark of the QuickBBS Group.
Turbo Pascal is a Registered Trademark of Borland, Inc.

 Triumph Software is not affiliated either Clark Development Co. Inc., The QuickBBS Group or Borland, Inc. in any way.

DISCLAIMER

Triumph Software and the employees/programmers in conjunction with and/or
affiliated with Triumph Software can not be held responsible for the condition of any
software received through any non-postal/non-parcel means.

Nor can said persons be held responsible for any damage caused to media or
hardware as a direct or indirect result of the use of any of our products.

Triumph Software and it's employees and associates would like it to be known,
however, that all of their products are thoroughly tested before leaving our offices. It is
only in the deepest faith in our own product that any such software is released to the
public.

Triumph Software reserves the right to change any documentation, disclaimer,
licensing information or registration procedures and costs at any time for any reason with
no prior warning or notice.

i

LIMITED LICENSING AGREEMENT

The holder of the unregistered TriDoor package is allowed a limited usage period of
30 (thirty) days, wherein he or she may incorporate the unit in any program that he or she
develops as long as the program incorporating the TriDoor unit is not distributed in any
manner at any time. After the thirty day period, the holder of the unregistered copy of
the TriDoor package must register the software to be allowed further use of TriDoor.

A private registered copy may be obtained by filling out the TriDoor registration
form and sending both the registration form and $15.00, in the form of a check or money
order, to Triumph Software. The private copy will allow the registered owner to produce
programs using the TriDoor unit and distribute them as long as the registered copy of
TriDoor is not included in the package, no compensation of any kind is obtained in any
way from the distribution of the software incorporating the TriDoor unit, and Triumph
Software is given ample credit as depicted in the final chapter of this document. The
registered copy of the TriDoor unit must not be distributed in any way other than as a
compiled portion of a program or software produced by the registered copy holder.

A commercial registered copy may be obtained by filling out the TriDoor registration
form and sending both the registration form and $30.00, in the form of check or money
order, to Triumph Software. The commercial copy will allow the registered owner to
produce programs using the TriDoor unit and distribute them. This copy also allows the
holder of the registered copy to obtain legal compensation for the program incorporating
the TriDoor package. The holder of the commercial registered copy must include
acceptable credit in the documentation of his or her program as further explained in the
final chapter of this document. The registered copy of the TriDoor unit must not be
distributed in any way other than as a compiled portion of a program or software
produced by the registered copy holder.

An individual copy must be registered for each individual machine and each
individual company or person. The only exception is in the case of a company owned by
a singular person in which case the copy may be registered for both.

ii.

Triumph Software reserves the right to revoke registration privileges either
temporarily or permanently if the conditions of the registration are not properly met by
the holder of the registered TriDoor package.

Triumph Software reserves the right to use the registered owners name, company
and/or product created incorporating the TriDoor unit in any of Triumph Software's
advertising of any type.

Registered copy holders will be entitled to minor upgrades of the TriDoor package at
a minimal processing and materials fee of $5.00 per upgrade.

iii.

HOW TO USE THIS MANUAL

First and most importantly is that you read the entire manual from front to back. As
easy as TriDoor is to use it will be absolutely useless to you if you don't at least read
most of it, and in addition to that there are also many hints and refining tips in this
document that will help you to truly take command of this software, so it is in your best
interest to read all of it.

As far as the actual text goes, you need to keep a few things in mind about the format
of this manual.

• The normal text in this document is in Times New Roman font, like this.
The variables, functions and procedures in this manual are in Arial font, like this.

• Anything in bold arial letters is a function or procedure. i.e. td_writeln, td_readln
and read_dorinfo.

• Anything in arial italics is an accessible variable. i.e. disable_queue,
stats.ansi and toggle.disable_screen

 The rest is simply in the text itself. Good luck and happy reading.

iv.

TABLE OF CONTENTS

1.0 Why Use TriDoor? 001

2.0 Features of TriDoor 006

3.0 What's New This Version 011

4.0 Standard Programming Procedures 016
4.1 Programming with TriDoor 018
4.2 Programming Tips 021

5.0 Advanced Programming Procedures 024
5.1 Advanced Programming with TriDoor 026
5.2 Locked Communications Support 027
5.3 Creating Your Own Door Support 028

6.0 Standard Command Summary 032

7.0 Advanced Command Summary 081

8.0 Accessible Global Variables and Constants 104
8.1 Accessible Global Variables 106
8.2 Accessible Global Constants 109

9.0 Reserved Words 111

10.0 Acceptable Credit in Programs and Documentation 116

11.0 Who to Contact 121

12.0 History of TriDoor 125

v.

1.0
———————
Why Use TriDoor?

1.0 Why Use TriDoor?

TriDoor is the most advanced, efficient and easy-to-use utility of it's kind available
on the software market today. It allows even the novice Borland Turbo Pascal
programmer to create fully-functioning doors, on-line programs and utilities in a matter
of minutes without ever having to delve into the hundreds of texts on communications
programming.

In addition to having complete communications support TriDoor also comes
equipped with many other features which are extremely useful when writing
communications applications. Examples of these are color ANSI graphics controls, user
time handling routines and many Pascal-like commands such as td_writeln which is the
communications equivalent of write and writeln.

TriDoor is flexible too! With the exception of a few things here and there (like the
tell-tale chat mode) your users may never even know that you did not write the entire
program- communications routines and all. You will see no hard-coded error messages,
forced configuration files or annoying restrictions that you did not develop yourself.
This allows you to use all your programming resources the way YOU want as opposed
to the way a tool kit may have set them up. A prime example of this is command line
parameters; some tool kits will force you to enter in the name of a configuration file on
the command line. What if you would rather enter in an IRQ setting or a user name?
What if you do not want a configuration file? TriDoor allows you to do as you will.

The programming possibilities are endless- I have written on-line games, archive
viewing utilities, text/ANSI graphics file viewers, "top ten list" generators, terminal
programs, SysOp paging doors and many MANY more.

How many times have you said to yourself, "This is truly an excellent bulletin board
system I have running if only I could add on a [blank] without changing to a new BBS
software..."? Well, there are a few solutions to this problem: You could switch BBS
software which may give you a few options you did not have before but you are also
reducing yourself to rebuilding a system you have already put probably hundreds of
hours of work into and potentially compromising the quality of your user's environment -
or- you could download a door from your local BBS where you may find a program to
do what you

003
1.0 Why Use TriDoor?

need, but it may not be EXACTLY what you want -or- you could use TriDoor to write
your own! You could have the door you want, make the changes you need at ANY time
and have the pleasure of having made it yourself.

I frequently find myself saying, "If you cannot do it with TriDoor, then you probably
cannot do it." I have only scraped the surface of it's capabilities and ease of use; the rest
is up to you. You now hold the power to make the doors, on-line games and utilities that
you have always wanted!

004

2.0
———————
Features of TriDoor

2.0 Features of TriDoor

TriDoor has many advanced and VERY easy-to-use features which are built right in.
And although there are so many that I literally cannot remember ALL of them, we are
still adding all the time so give us a call so we can get you a copy of the latest version.

• NOW VERY INEXPENSIVE! SEE LICENSING AGREEMENT!

• Automatic set-up and support of communications ports
• Automatic reading and processing of DORINFO1.DEF and PCBOARD.SYS
• Easy to use commands such as td_writeln and td_readln which function as

communications supporting equivalents of the Turbo Pascal commands
• Built-in chat mode with word-wrap and ANSI color graphics
• Boolean variable halt_program which is set to TRUE if [F8] is hit from the local

keyboard- allows for programmer-defined "hang-up" procedures
• Easy forced "caps-lock", and "password-entry" (see "***" instead of "hey" or

"YOU" instead of "you")
• Length restriction available on td_readln input fields
• Built-in string capitalization, first letter capitalization and easy integer/longint to

string conversion available
• Built-in direct screen write functions
• Automatic status bar displaying time, name, baud rate and program name
• Automatic on-line user time handling routines
• Built-in routines for clearing user's and local screen
• Built-in Boolean response "Are you sure? (Y/[N])" function
• Built-in user-page (>BEEP!< "The SysOp is paging you!" >BEEP!<)
• Automatic "Last Printed" memory
• Command list on local screen in status bar
• Auto-sensing of color/monochrome local screen
• Borland Turbo Pascal 5.5, 6.0 and 7.0 support
• Full color ANSI graphics support

008
2.0 Features of TriDoor

• On-line user time modification from local console
• Automatic user drop out monitoring (halt_program := TRUE) at time<1
• System messages in status bar ("SysOp : User is being paged.")
• Ability to EASILY add support for ANY BBS system
• Ability to be run in multi-tasking environments such as DESQVIEW and

WINDOWS.
• Local disable/enable of remote user keyboard
• Ability to fake line-noise generation from local console
• Ability to use non-standard IRQ/COMM port configurations
• Ability to change all communications parameters
• Locked communications port support
• Complete flow control support (XON/XOFF and CTS/RTS)
• Configurable/disable able user keyboard time-out feature
• Messages such as "Entering chat mode." can now be changed
• Configurable return to normal status bar after nn seconds
• Procedure naming conventions similar to Turbo Pascal's
• Efficient, fast, operation
• ANSI capable display_file procedure
• Ability to disable local screen from program or local [F9] keypress
• PCBoard convention local command keys ([F5]=dos shell, [F10]=chat mode)
• A built-in DOS shell

 ... And more!

009

3.0
———————
What's New This Version

3.0 What's New This Version

While being rather cliché, I think an easier question in this case would be "What
ISN'T new on this version?" The answer being "Not a heck of a lot."

I have been meaning to do a lot of these revisions and improvements for quite some
time now, but higher responsibilities within the company and my own life often drag me
behind. After some back-breaking effort and a few sleepless nights, however, here it is.

First and foremost are the fees. I have reduced them to staggeringly low values of
$15.00 for the private copy and $30.00 for the commercial copy. Economy? Fit of
niceness? General insanity? Who knows? Just enjoy it... and register!

The worst and best news is that all of the procedures, functions and variable names
have been changed; getinput has become td_readln, print has become td_writeln and
so on. While this is going to take a little elbow grease and a good global-replace session
for some of you, for those of you just starting, it will make life a lot easier.

I have also added a configurable and disable able user keyboard inactivity time-out
feature. A very nice addition since otherwise the user could sit there for forty-five
minutes and never hit a key and simply tie up the line.

I have also made a minor modification that simply restores your status-bar at the
bottom of the local screen after a number of seconds which you can set. While this is a
minor thing, it is nice since no-one really wants to know that you have to hit Escape to
exit chat mode thirty minutes after you have left the session.

The SysOp keys have also been modified to comply with PCBoard conventions.
There are two reasons for this : one is that I like it better and I think PCBoard is
excellent, and two is that more and more doors are accepting this convention.

All of the procedures and functions have been streamlined. I have removed, blended,
combined and added certain processes and functions in order to make the program faster
and more compact. Most will not notice a difference until they get up into the higher
speeds.

013

3.0 What's New This Version

Also new are the built-in local DOS shell and the ability to disable the local screen.
This screen disable function is often handy for people running multiple nodes and can be
done through [F9] or in the program itself.

Finally is the ability to change such messages as "Entering chat mode." In the future
you may be able to use actual text and ANSI files for these, but at the moment you are
limited to 255 characters.

While there are more slight changes and modifications here and there, writing them
all would take the rest of this document, so I would simply advise reading the rest of the
document since that is where you will find them.

014

4.0
———————
Standard Programming
Procedures

 4.1 Programming with TriDoor
 4.2 Programming Tips

4.0 Standard Programming Procedures

4.1 PROGRAMMING WITH TRIDOOR

Creating doors with TriDoor is an astoundingly simple process but a couple steps
must be taken in each program you write in order for the program to function normally.
The computer may physically "hang" if these few following procedures are not
completed (but will usually just drop out with a complaint about not being able to set-up
properly.) Once you have gone through these procedures you then may use any of the
commands listed in the command summary just as you would normal Turbo Pascal
commands.

A very basic example of how to set-up a simple program (EXAMPLE.PAS) comes
with this software package. While it is very crude and simplistic it will be an excellent
building block from which you can start. In the future I intend to release an actual
functioning door which you may do with as you please. This will most likely not be
anything more than a BBS phone number maintenance door, but it will be more in-depth
than the example program included with this package. Until then I have put a great deal
of effort into making this document more verbose so as to make it even easier to
understand how to program with TriDoor.

Despite the examples and this manual, however, it is very important that you have a
basic understanding of the following Turbo Pascal/Pascal features : records, global
variables, constants, functions, procedures, loops, units, and general syntax. Without
these and the other basic fundamentals of Turbo Pascal, you will have a more difficult
time using this unit. This is not a "let's learn Turbo Pascal" document! This is a "let's
learn TriDoor" document. This is also not a "let's learn the fundamentals of BBS
operation" document, so you need to know how your system is set-up and it does help to
have a little experience with setting up doors as well.

Do not be discouraged if you feel under-knowleged. The likelihood is that you know
more than you realize, and if you even know a small amount about these things, you
should be all set. Press on! If something confuses you, simply refer to the appropriate
manual and learn more about it.

The following is an actual step-by-step process of what you need to do to set up
TriDoor with your program. It is a good idea to print out and refer to the program
EXAMPLE.PAS as you go along in this section.

018

4.1 Standard Programming Procedures

The very first thing you must do is declare your TriDoor unit in your 'uses'
declaration within your source code. TriDoor needs to redefine some of Turbo Pascal's
CRT constants for it's own use, so it is important to declare your TriDoor unit after the
CRT unit in all cases. These reassignments will not affect your program's operation in
any adverse or noticeable way.

TriDoor supplies a global record variable, stats, to you. In the next portion of your
program, you must fill in all of the fields in this record. This process is done
automatically by two functions that are included in the TriDoor unit; these functions are
read_dorinfo and read_pcboard. These functions read in the DORINFO1.DEF and
PCBOARD.SYS door support information files, respectively, and fill them into the stats
record for you.

If you are planning to support a BBS software that does not create either of these
support files, you must then fill in these values by means of a like procedure of your
own. To make it easier to understand just what we have done, a copy of our
read_dorinfo and read_pcboard functions have been included in the section of this
document entitled CREATING YOUR OWN DOOR SUPPORT.

Remember that if you are using non-standard IRQ settings, you must make it so that
your program can determine the appropriate address from another means, such as a
command-line parameter or a configuration file of your own.

A list of TriDoor-defined global constants such as COM1, IRQ3 and others is listed
in the section entitled GLOBAL CONSTANTS. These constants have addresses
assigned to them to make programming easier.

There are also many variables accessible to you which will have a great deal of affect
on the amount of control you have over TriDoor. These are listed in the chapter
ACCESSIBLE GLOBAL VARIABLES.

TriDoor also supplies you with a string variable; support_path. The functions
read_pcboard and read_dorinfo will look in the path specified in this variable for the
on-line door support information files. In other words, if you fill in this variable with the
path where these files are available, these functions will look in that directory for those
files. This is very useful because it allows you to supply a path to the files instead of
copying them into the directory where the door is executed.

019

4.1 Standard Programming Procedures

The support_path global variable, like all others, can be altered, and incorporated
into your own code to suit your needs. It is recommended that if you write procedures
for other door support files that you use this variable in your function.

Once the stats record has been successfully filled, all you need then do is call the
Boolean setup_tridoor function. If this function returns a TRUE then your
communications link has been setup properly and you can then use any of the other
TriDoor functions and procedures as you would a normal Turbo Pascal command. If it
returns a FALSE then you have most likely supplied TriDoor with some inaccurate
information somewhere along the way and the TriDoor functions and procedures will
not work until you fix the problem and call the procedure again.

Don't forget the locked communications support! Because of today's high-speed
modems it is sometimes necessary to "lock" the speed from your computer to your
modem at a higher rate than the modems actual connection to the remote caller. This is
done so that optimum performance from your high-speed modem can be obtained.

This version of TriDoor has two new variables to allow for "locked" communications
ports. The old stats.baud has been changed to stats.real_baud which is the actual
connection speed. The stats.lock_baud variable is your locked communications port
setting, which is actually the speed at which the local computer and modem are
transmitting to each other.

To support locked communications ports you need only to fill in these two variables
before running the setup_tridoor function. This topic will be discussed at length in the
section entitled LOCKED COMMUNICATIONS SUPPORT. Remember that any
door support information file reading function supplied with TriDoor automatically
checks for locked communications support. The only exception being on how each given
QuickBBS and QuickBBS clone creates the DORINFO1.DEF file. If it supplies the
locked baud rate like it is supposed to do, you will be all set. Otherwise, you will have to
supply the baud rate through another means such as the aforementioned command line
parameter or configuration file.

Another very important thing is to keep the stack and heap sizes at a size large or
small enough to allow the built-in TriDoor DOS shell to function properly. This is done
through the $ M compiler directive which is explained in your Turbo Pascal manual.
Keep in mind that in many cases, the appropriate values can be gotten by a little trial and
error. Also keep in mind that as your program grows you may need to change the
compiler directives to accommodate for size and variable memory consumption.

020
4.0 Standard Programming Procedures

4.2 PROGRAMMING TIPS

Here are several ideas and concepts to keep in mind as you program. Remember that
TriDoor is very flexible to allow you to do pretty much what you like with the
commands and make it as personalized as possible but due to this flexibility some things
are not so readily obvious (or forced, for that matter) as they might be in a more
structured programming environment.

• Remember to check the exit_door function in every loop. This function
will check every possible condition that would indicate that the program
needed to halt. If you do not do this, you will wind up with a door that will
simply hang when a user logs off or runs out of time.

• If you create support for another BBS support file it is often a good idea to
make the procedure a Boolean returning function so that way you can
immediately tell if there was a problem when the program tried to read the
data. TriDoor's read_dorinfo function does this. See the example program
(EXAMPLE.PAS) provided with this package to see how it is used.

• Again, if you are creating support for another BBS, try to use the
support_path variable to allow your program to be present in a directory
other than the one that your support file is in. Refer, once again, to the
read_dorinfo function in the chapter PROGRAMMING WITH TRIDOOR.

• If you want the local user (SysOp) to see something that the remoter user
(on-line user) does not, use a writeln instead of a td_writeln or perhaps use
TriDoor's statusbar_message routine.

• Remember to check to see if the local screen is disabled before using any
non-TriDoor screen writing function such as write or writeln.

• Try not to exclude non-ANSI graphics users from your door. Many people
do not have ANSI graphics support. Don't limit yourself and your program.

021

4.2 Standard Programming Procedures

• Remember that many bulletin board systems run better if they stay in
memory while a door is run, and some HAVE to stay in memory at all
times. Keep this in mind when writing your doors and keep them small, or
break them into modules. Don't put once-a-day-maintenance programs as
part of the main door, etc.

• THINK IT OUT! If there's something you want to do, but are not sure if you
can with TriDoor then take a moment to think it through. I can almost
guarantee you can do it. If you cannot think of a way, give us a call and we
will give you a hand or remedy the problem.

022

5.0
———————
Advanced Programming
Procedures

 5.1 Advanced Programming with TriDoor
 5.2 Locked Communications Support
 5.3 Creating Your Own Door Support

5.0 Advanced Programming Procedures

5.1 ADVANCED PROGRAMMING WITH TRIDOOR

When you begin going beyond the realms of the basic TriDoor features made
available to you, you then begin having the need to access some of the global variables
and records.

You also need to be familiar with certain terms and concepts which will not only
allow you to make excellent communications procedures of your own, but are also
necessary to understand the next few sections of this document. You should read this
section whether or not you plan to attempt this because it will also allow you a better
understanding of how TriDoor works.

The first thing you should understand is the concept of a halting condition. A halting
condition is a defined number of possibilities that form together in various combinations
that indicate that the program should be stopped. An example of this is when a carrier is
dropped. Because the program was not in local operation (which means that the variable
toggle.user_local was set to FALSE at some point during startup) and the carrier had
been dropped (which means that the TriDoor function carrier_detect returned a FALSE)
the program is then expected to come to a halt. It is important to also keep in mind that
there is one Boolean variable, toggle.halt_program, which has priority over all other
halting conditions. That is, if this variable is set to true, no matter what other conditions
say, the program is expected to drop out immediately. TriDoor's exit_door function
automatically checks these variables, in order of priority, at all times. It is important to
check this procedure in all of your customized door procedures and functions. Another
thing that is important to understand is that, at some times, the Boolean variable
toggle.disable_screen will be set by either a local command-keypress ([F9]) or by your
own program. This means that the SysOp does not want the screen to be updated until
the screen is re-enabled. It is important to monitor this toggle whenever you plan on
writing to the local screen. All TriDoor output functions do this automatically, but
Turbo Pascal's write and writeln do not!

026

5.0 Advanced Programming Procedures

5.2 LOCKED COMMUNICATIONS SUPPORT

It is very important to support locked communications support in any software that
you plan to release to the public. If you do not a fair amount of people with high-speed
modems will not be able to use your package or will simply not bother to try.

If you are running PCBoard 14.x or any other BBS that supplies a compatible
PCBOARD.SYS file then you should not have to concern yourself with this issue
because read_pcboard will automatically handle any values necessary to set this support
up. If you run another BBS, however, different scenarios may apply. Some of these are
as follows:

If you are running QuickBBS or another BBS that supplies a DORINFOx.DEF file
you MAY have to supply TriDoor with the locked baud rate through some other means
such as a configuration file or a parameter. Never hard code the locked baud rate
because others may want to change it. All other information will be filled in
automatically by read_dorinfo. SOME QuickBBS clones provide the locked baud rate
in the normal baud rate field.

If you are running any other BBS there are two possible scenarios. If your BBS
supplies you with the locked port information in it's door support file then you may
simply read it in like TriDoor's read_pcboard does. If your BBS does not supply you
with the necessary information you must obtain the information from a configuration file
or command line parameter as in the case of a DORINFOx.DEF support file.

027

5.0 Advanced Programming Procedures

5.3 CREATING YOUR OWN DOOR SUPPORT

This is a copy of the read_dorinfo function which is incorporated directly into the
TriDoor package. It is supplied to you as a reference for creating your own BBS support
functions.

{* * * * * * * * *}

function read_dorinfo : Boolean;

{ reads a users stats from the file DORINFO1.DEF and returns false if the file was not
found }
{ in the path stored in support_path }

var
deffile : text; {* pointer to the file DORINFO1.DEF *}
i,
loop1,
loop2 : integer; {* local indexing loops *}
comst,
filler : string; {* temporary work strings *}
work1,
work2 : string[40]; {* short temporary work strings *}

begin { read_dorinfo }

if fsearch(mainpath+'DORINFO1.DEF','') <> '' then {* if the file was found... *}
begin

assign(deffile,mainpath+'DORINFO1.DEF'); {* assign & reset file *}
reset(deffile);

for loop := 1 to 4 do {* get rid of some un-needed strings *}
readln(deffile,filler);

028
5.3 Advanced Programming Procedures

case filler[4] of {* determine comm port *}
'0' : stats.comport := 0;
'1' : stats.comport := COM1;
'2' : stats.comport := COM2;
'3' : stats.comport := COM3;
'4' : stats.comport := COM4;

end;

readln(deffile,stats.comstr); {* read in '1200 N,8,1' type string *}

readln(deffile,filler); {* ignore un-needed string *}

readln(deffile,work1); {* read in user's first and last name *}
readln(deffile,work2);

readln(deffile,filler); {* ignore un-needed string *}

readln(deffile,i); {* read in ANSI/non-ANSI *}

readln(deffile,filler); {* ignore un-needed string *}

readln(deffile,stats.time); {* read in user time *}

close(deffile); {* close file, done reading *}

stats.name := work1 + ' ' + work2; {* make a name into a full name *}

work1 := '';
loop2 := 0;
loop1 := length(stats.comstr);

{* search the '1200 N,8,1' style string up to the first space *}

while (loop2<loop1) and (ord(stats.comstr[loop2+1]) <> 32) do
begin

loop2 := loop2 + 1;
work1 := work1 + stats.comstr[loop2];

end;

val(work1,stats.real_baud,loop); {* get the value of the string and *}
{* store it into the baud rate value *}

029
5.3 Advanced Programming Procedures

if i = 1 then stats.ansi := TRUE {* assign stats.ansi toggle *}
else stats.ansi := FALSE;

i := pos('BAUD',stats.comstr); {* get position of the word 'BAUD' *}
i := i + 5; {* for reference to next procedure *}

work1 := copy(stats.comstr,i,1); {* get parity *}
case work1[1] of

'N' : stats.comp_parity := NONE;
'E' : stats.comp_parity := EVEN;
'O' : stats.comp_parity := ODD;
'M' : stats.comp_parity := MARK;
'S' : stats.comp_parity := SPACE;

end;

val(copy(stats.comstr,i + 3,1),loop1,loop2);
{* get data bits *}

stats.comp_dbits := loop1;

val(copy(stats.comstr,i + 5,1),loop1,loop2); {* get stop bits *}
stats.comp_sbits := loop1;

read_dorinfo := true; {* we were successful, return a true *}
end

else read_dorinfo := false; {* file not found, return a false *}

end; { read_dorinfo }

{* * * * * * * * *}

030

6.0
———————

Standard Command
Summary

6.0 Standard Command Summary

The following pages are a list of main commands made accessible to the
programmer by TriDoor. These commands are those that are needed primarily and
should accommodate to your every communications need.

Additional, more advanced, commands are also available to the programmer for use
when programming alternates or substitutes to some of TriDoor's main commands.
These commands are in the section entitled ADVANCED COMMAND SUMMARY.

034

direct_gotoxy

Synopsis

procedure direct_gotoxy(x,y : integer);

Description

This procedure will position the screen memory cursor position in the place in
memory relative to the position (x,y) on the actual screen. This procedure only
affects the local screen.

If the program does not set the direct screen memory position by calling on
the direct_gotoxy procedure, the direct_char and direct_strg functions will
resume where the last execution of a direct output function left off.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
direct_gotoxy(0, 24);
direct_strg('[F1] Help 1 [F2] Help 2 [F3] Normal Status Bar [F5] DOS',

112);
end;

Variables

direct_xypos
toggle.disable_screen

See Also

direct_strg, direct_char
ansi_gotoxy

035

direct_char

Synopsis

procedure direct_char(d_char : char; d_attr : integer);

Description

This procedure will place the character d_char directly into screen memory,
and therefore, on the screen in the position relative to the memory location stored
in the variable direct_xypos. This position can be set by using the procedure
direct_gotoxy.

The d_attr variable is the color setting of the character your are about to
display. It is a very useful parameter since it will allow you to create any color
combination of background and foreground colors with just one number.

For a color-coded listing of these colors, as well as an example of how to
determine what number corresponds with what color, run the program
DISPATTR.EXE, included with this package.

If the program does not set the direct screen memory position by calling on
the direct_gotoxy procedure, the direct_char and direct_strg functions will
resume where the last execution of a direct output function left off.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
direct_gotoxy(1, 10);
direct_char('A', 7); {* write a character at 1,10 *}
direct_char('B', 7); {* write another character at 2, 10 *}

end;

Variables

direct_xypos
toggle.disable_screen

036

direct_char

See Also

direct_gotoxy, direct_strg
ansi_gotoxy

037

direct_string

Synopsis

procedure direct_string(d_strg : string; d_attr : integer);

Description

This procedure is identical to direct_char except that it will allow you to
display an entire string instead of just a single character.

The d_attr variable is the color setting of the character your are about to
display. It is a very useful parameter since it will allow you to create any color
combination of background and foreground colors with just one number.

For a color-coded listing of these colors, as well as an example of how to
determine what number corresponds with what color, run the program
DISPATTR.EXE, included with this package.

If the program does not set the direct screen memory position by calling on
the direct_gotoxy procedure, the direct_char and direct_strg functions will
resume where the last execution of a direct output function left off.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
direct_gotoxy(1, 5);
direct_strg('This is an exciting example : ', 7); {* write at 1,5 *}
direct_strg('SEE?!', 7); {* continue right after prev. *}

end;

Variables

direct_xypos
toggle.disable_screen

038
direct_string

See Also

direct_gotoxy, direct_char
ansi_gotoxy

039

set_cts

Synopsis

procedure set_cts(cts_on : Boolean);

Description

This procedure enables and disables the active modem's hardware flow
control. Hardware flow control is very important for proper modem operation,
especially in the case of modems operating at speeds over 2400 baud.

This procedure is automatically handled and executed by TriDoor.

The default setting for the flow control is on. (TRUE)

Example

begin
set_cts(TRUE);

end;

Variables

none

See Also

cts_true

040

cts_true

Synopsis

function cts_true : Boolean;

Description

This function polls the modem and returns a Boolean TRUE if it is clear to
send.

This function is automatically monitored by all of TriDoor's output functions
and procedures.

Example

begin
while (not cts_true) do; (* Loop while the modem is not ready *)
writeln('Modem is now ready for character.');

end;

Variables

none

See Also

set_cts

041

carrier_detect

Synopsis

function carrier_detect(comm_port : integer) : Boolean;

Description

This function will return a Boolean TRUE if a carrier is detected at the
communications port comm_port.

Global constants for communications ports are made available by this
TriDoor. They are COM1, COM2, COM3 and COM4; representing the four
main-stream ports used by PCs.

This function is constantly checked within TriDoor, but if you create a new
procedure, you may find it necessary to monitor this function. The optimum
alternative is to monitor the exit_door function instead, however, since it also
checks the halt_program Boolean variable, and also takes into account whether or
not the user is in local mode. (There may not be a carrier, but if the user on-line is
in local mode, there is no reason to drop them out of the program, and thus
exit_door would return a FALSE.)

Example

begin
if (carrier_detect(stats.comport)) then

writeln('There is a carrier present.')
else writeln('There is no carrier present.');

end;

Variables

stats.comport
COM1, COM2, COM3, COM4 (constants)

See Also

exit_door

042

setup_tridoor

Synopsis

function setup_tridoor : Boolean;

Description

This function performs all the necessary setup routines for operation of your
door. It returns a Boolean TRUE if it did so without any problems, and a FALSE
if there was some error in setup. Errors are usually caused by trying to set up the
wrong communications port, baud rate, or other critical information.

Before this routine is called, your program must fill in the stats record with all
appropriate settings. This is where setup_tridoor will look for baud rate,
communications port, IRQ settings, and more. For further information regarding
the stats record see the chapters entitled ACCESSIBLE GLOBAL
VARIABLES and PROGRAMMING WITH TRIDOOR.

TriDoor also provides you with two functions which fill in this record,
automatically, from two different bulletin board system door support files. These
functions are read_dorinfo and read_pcboard, and they read in the necessary
data from the files DORINFO1.DEF and PCBOARD.SYS, respectively.

** If you do not call the setup_tridoor procedure, all other TriDoor functions
and procedures will not operate properly, and may cause your system to lock
up! **

Example

begin
if (read_pcboard) then

begin
if (setup_tridoor) then

begin
(* main door operation here *)

end
else writeln('ERROR : TriDoor was not able to set up the comm

port.');
end

else writeln('ERROR : PCBOARD.SYS not found.');

043

setup_tridoor

Variables

stats (record)

See Also

read_pcboard, read_dorinfo

044

exit_door

Synopsis

function exit_door : Boolean;

Description

This function will check the carrier on the current communications port, the
value of the toggle.halt_program and toggle.user_local Boolean variables, and
the on-line user time statistics. From all of these values, the exit_door function
automatically determines whether or not the on-line user should be dropped out of
the program.

The order of halting condition precedence is : halt, local, carrier.

In other words, no matter what conditions prevail, if toggle.halt_program is
TRUE, exit_door will return a TRUE. If the function carrier_detect returns a
FALSE, but toggle.user_local is TRUE then exit_door will return a FALSE. etc.

The following is a table that shows the results of a call to the exit_door
function under all possible circumstances.

Example

var
name_strg : string[35];

begin
td_writeln('Please enter your name after the prompt. Your name must be||');
td_writeln('longer than three characters.||');

while (length(name_strg) < 3) and (not exit_door) do
begin

td_writeln('||Enter your name : ');
td_readln(name_strg, 35, CAPS_ON, CODE_OFF);
if (length(name_strg) < 3) then

td_writeln('||Your name must be at least three characters long.||');
end;

end;

045

exit_door

Variables

toggle.halt_program, toggle.user_local, toggle.inactivity_timeout

See Also

carrier_detect
time_until_timeout, time_remaining
display_time

046

strg

Synopsis

 function strg(in_value : longint) : string;

Description

This function will take any value given to it as in_value and will return a
string representation of that value.

Example

var
int_val : integer;
long_val : longint;
temp_strg : string;

begin
temp_strg := strg(long_val);
td_writeln('The value of the long integer is : ' + temp_strg + '||');
temp_strg := strg(int_val);
temp_strg := temp_strg + ' is the value of the standard integer.';
td_writeln(temp_strg + '||');
td_writeln('The value of the sum of ' + strg(long_val) + ' and ' +

strg(int_val) + ' is ' + strg(long_val + int_val) + '.||');
end;

Variables

none

See Also

td_upcase, capitalize

047

td_upcase

Synopsis

function td_upcase(in_strg : string) : string;

Description

This function is TriDoor's replacement for/supplement to Turbo Pascal's
upcase command. The difference being that this function will capitalize an entire
string and not just one character.

Example

var
bbs_name : string;

begin
write('Please enter the name of this BBS : ');
readln(bbs_name);
bbs_name := td_upcase(bbs_name);
writeln('You have entered ', bbs_name, ' as the name of this BBS.');

end;

Variables

none

See Also

strg, capitalize

048

capitalize

Synopsis

function capitalize(strg : string) : string;

Description

Don't let the name of this function fool you; it does a lot more than just
convert everything into upper-case. This function will return a string with every
first letter of every word capitalized, and all others lower-cased.

i.e. 'HURON CAROL' would become 'Huron Carol'.
'chris russo' would become 'Chris Russo'.
'HoWarD MCgEe' would become 'Howard Mcgee'.

(notice that this function does not notice prefixes on names like McGee and
DuBois.)

Example

var
name_strg : string[35];

begin
td_writeln('Please enter your name : ');
td_readln(name_strg, 35, CAPS_ON, CODE_OFF);
name_strg := capitalize(name_strg);
td_writeln('Your name will appear as ' + name_strg + ' on this system.||');

end;

Variables

none

See Also

td_upcase, strg

049

td_clrscr

Synopsis

procedure td_clrscr;

Description

This procedure is the TriDoor communications equivalent of Turbo Pascal's
clrscr procedure. It will clear both the local and remote screen, if applicable. If
ANSI is enabled by setting stats.ansi to TRUE this procedure will automatically
take advantage of ANSI screen clearing by calling TriDoor's ansi_clrscr
procedure.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
td_clrscr;

end;

Variables

toggle.disable_screen

See Also

ansi_clrscr

050

td_outstrg

Synopsis

procedure td_outstrg(comm_port : integer; out_strg : string; echo_strg :
Boolean);

Description

This procedure is a very basic, un-filtered, writeln equivalent. It will output
the string out_strg to the communications port comm_port. If echo_strg is TRUE
it will also display the output on the local console.

The major differences between TriDoor's td_outstrg and Turbo Pascal's
writeln are as follows :

• Inserting variables requires +'s not ,'s.

Turbo Pascal : write('TriDoor is a great ' , adj_strg);
TriDoor : td_outstrg(stats.comport, 'TriDoor is a great ' + adj_strg,

ECHO_ON);

• td_outstrg requires that all values be turned to strings.

Turbo Pascal : write('TriDoor Ver ' , TDVER);
TriDoor : td_outstrg(stats.comport, 'TriDoor Ver ' + strg(TDVER),

ECHO_ON);

• td_outstrg will not do a carriage return unless given one. (This reduces the
number of commands by a factor of two, and sometimes reduces the number
of actual instructions.)

Turbo Pascal : writeln('TriDoor is truly amazing!');
 writeln;

TriDoor : td_outstrg('TriDoor is truly amazing!'+ CR + CR);

(CR is a global constant supplied by TriDoor)

051

td_outstrg

• td_oustrg allows your door program to display a text message to only the
 remote screen, or to both screens.

Turbo Pascal : writeln('This will only be displayed on the local screen.');
TriDoor : td_outstrg(stats.comport, '...only on remote!',
ECHO_OFF);

: td_outstrg(stats.comport, '...on both screens!',
ECHO_ON);

** Remember that if the variable toggle.disable_screen is set to TRUE, no
output will be displayed on the local console! **

Example

const
TDVER = 3.00;
CR = chr(13) + chr(10);

var
adj_strg : string;

begin
td_outstrg(stats.comport, 'TriDoor Ver ' + strg(TDVER), ECHO_ON);

 td_outstrg(stats.comport, 'TriDoor is a great ' + adj_strg, ECHO_ON);
td_outstrg(stats.comport, 'TriDoor is truly amazing!'+ CR + CR,

ECHO_ON);
end;

Variables

stats.comport
toggle.disable_screen
CR, BS, ECHO_ON, ECHO_OFF (constants)

See Also

td_outchar, td_writeln, statusbar_message
direct_char, direct_gotoxy

052

td_outchar

Synopsis

procedure td_outchar(comm_port : integer; outchar : char; echo_char :
Boolean);

Description

This procedure is identical to td_outstrg except that it is modified to accept
only one character at a time. When the programmer is sure that only one
character will be output, this is a slightly faster procedure to use.

I have given the programmer access to this procedure mainly so that if they
would like to create an alternate or substitute string output procedure they can do
so without sacrificing a great deal of speed. However, the td_outstrg procedure
is the fastest string output procedure that you can possibly have in TriDoor since
it accesses the appropriate interrupts directly within the procedure. In conclusion,
unless you will be making a function or procedure that has significant differences
from TriDoor's, we advise you just use the ones given to you.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
td_outchar(stats.comport, 'T', ECHO_ON);

end;

Variables

ECHO_ON, ECHO_OFF (constants)

See Also

td_writeln, td_outstrg, statusbar_message
direct_char, direct_gotoxy

053

td_writeln

Synopsis

procedure td_writeln(strg : string);

Description

This is the more refined version of td_outstrg. It is much easier to use since
it refers to the variable toggle.td_writeln_echo to determine whether or not the
text should be echoed to the local console. It also automatically assumes that you
will be using stats.comport as your default communications port.

In addition to these benefits, it also allows you to replace a '+CR+' with a '||' to
represent a carriage return.

• For example :

td_outstrg(stats.comport, 'This manual is long.'+CR+'I enjoy reading'+CR,
ECHO_ON);

can be replaced by...

td_writeln('This manual is long.||I enjoy reading.||');

• You can also link together carriage returns :

td_writeln('Another example.||||How riveting.||');

This would produce 'Another example.'
''
'How riveting.'

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
td_writeln('This manual is long.||I enjoy reading.||');
td_writeln('Another example.||||How riveting.||');

end;

054

td_writeln

Variables

toggle.td_writeln_echo, toggle.disable_screen
CR

See Also

td_outchar, td_outstrg, statusbar_message
direct_char, direct_gotoxy

055

statusbar_message

Synopsis

procedure statusbar_message(message_strg : string);

Description

This procedure will display the message passed to it in the variable
message_strg in the status bar window. It is an excellent way for your program to
communicate with the SysOp without allowing the user see the message as well.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
statusbar_message('Press [ESC] at any time to exit chat mode.');

end;

Variables

toggle.disable_screen

See Also

display_statusbar, display_helpbar_1, display_helpbar_2

056

td_keypressed

Synopsis

function td_keypressed : Boolean;

Description

This is the TriDoor communications equivalent of Turbo Pascal's keypressed
function. It will check the input buffer to determine whether or not a key has
been pressed and sent from the remote user and return a Boolean TRUE if there is
one waiting.

This function does not acknowledge local key presses.

Example

var
in_key : char;

begin
if (td_keypressed) then {* if a remote key was pressed *}

in_key := td_readkey

else if (keypressed) then {* if a local key was pressed *}
in_key := readkey;

end;

Variables

buffer_top, buffer_head, buffer_tail

See Also

confirm
td_readkey, get_keypress
td_readln
get_phone, get_date

057

td_readkey

Synopsis

function td_readkey : char;

Description

This function is the TriDoor communications equivalent of Turbo Pascal's
readkey function. It will remove and return the next waiting character in the
input buffer.

This function does not acknowledge local key presses.

Example

var
in_key : char;

begin
if (td_keypressed) then

in_key := td_readkey {* read a key from comm port *}

else if (keypressed) then
in_key := readkey; {* read a key from local keyboard *}

end;

Variables

buffer_top, buffer_head, buffer_tail

See Also

confirm
td_keypressed, get_keypress
td_readln
get_phone, get_date

058

get_keypress

Synopsis

function get_keypress : char;

Description

This function is an enhancement on the previous td_keypressed and
td_readkey functions. It will wait for a character to be pressed, either locally or
remotely, and then return it. If toggle.disable_user_keyboard is set to TRUE it
will not acknowledge remote key presses.

Example

var
in_char : char;

begin
in_char := get_keypress;

end;

Variables

toggle.disable_user_keyboard, toggle.disable_screen

See Also

confirm
get_phone, get_date
td_readln
td_readkey, td_keypressed

059

td_readln

Synopsis

procedure td_readln(input_strg : string; max_length : word;
caps_lock, coded_input : Boolean) : string;

Description

This function is the TriDoor near equivalent of the Turbo Pascal readln
procedure. It acknowledges both the local and remote keyboards, unless the
global variable toggle.disable_user_keyboard is set to TRUE. In such a case,
remote keystrokes will be ignored. toggle.disable_user_keyboard is
automatically set by TriDoor's special remote function keystroke [ALT]-[F4].

There are also some additional features mad available in TriDoor's td_readln
that are not available in Turbo Pascal's readln.

• You can set the maximum length of the string in the field max_length, or
enter the global constant MAXIMUM for no relative maximum. (Absolute
maximum is 255 characters.)

• If caps_lock is set to TRUE, all input will be instantly forced into upper-case
letters. So if the user types "Lloyd Alexander" they will see, and the

procedure will record "LLOYD ALEXANDER". TriDoor supplies the global
constants CAPS_ON and CAPS_OFF to use in the place of caps_lock when
calling the function.

• If coded_input is set to TRUE, all input will be instantly forced into "*"s.
(asterixes) So if the user types "TERRY BROOKS" they will see

"************" but the procedure will record "TERRY BROOKS" as the
input. TriDoor supplies the global constants CODE_ON and CODE_OFF to use
in the place of coded_input when calling the function.

** Remember that if the variable toggle.disable_screen is set to TRUE, no
output will be displayed on the local console! **

060

td_readln

Example

var
 instring_long : string[80];

instring_short : string[30];

begin
td_writeln('Please enter a message to the SysOp : (max 80 characters)||');
td_readln(instring_long, 80, CAPS_OFF, CODE_OFF);

td_writeln('Please enter your name : (max 30 characters)||');
td_readln(instring_short, 30, CAPS_ON, CODE_OFF);

td_writeln('Please enter your password : (max 15 characters)||');
td_readln(instring_short, 15, CAPS_ON, CODE_ON);

end;

Variables

CAPS_ON, CAPS_OFF, CODE_ON, CODE_OFF (constants)
toggle.disable_user_keyboard, toggle.disable_screen

See Also

confirm
get_keypress
td_readkey, td_keypressed
get_phone, get_date

061

get_phone

Synopsis

function get_phone : string;

Description

This function is a hybrid of the td_readln function that will read in a
formatted phone number of the convention (xxx)xxx-xxxx.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

var
phone_strg : string;

begin
phone_strg := get_phone;

end;

Variables

toggle.disable_screen

See Also

confirm
get_date
td_readln
get_keypress
td_readkey, td_keypressed

062

get_date

Synopsis

function get_date : string;

Description

This function is a hybrid of the td_readln function that will read in a
formatted date of the convention MM/DD/YY.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

var
date_strg : string;

begin
date_strg := get_date;

end;

Variables

toggle.disable_screen

See Also

confirm
get_phone
td_readln
get_keypress
td_readkey, td_keypressed

063

confirm

Synopsis

function confirm(question_strg : string; default : char) : Boolean;

Description

Confirm is one of my favorite and most often used extraneous functions. It
takes question_strg and appends a '? (Y/[N])' to it if the default is 'N' (global
constant NO), or a '? ([Y]/N)' if the default is a 'Y' (global constant YES). Then
the user must enter a 'Y', 'N', or [RETURN] for the default.

If the global variable toggle.disable_user_keyboard is set to TRUE, the
remote keystrokes will be ignored. Otherwise, this function will acknowledge
both local and remote keystrokes.

The function then returns a Boolean TRUE if the user selected [Y]es, and
FALSE if they picked [N]o.

The global constants YES and NO are provided by TriDoor.

i.e. if confirm('Are you sure you want to explode',YES) then...

would produce...

'Are you sure you want to explode? ([Y]/N) '

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
if confirm('Are you sure you want to blow up the earth', NO) then

td_writeln('||||BOOM!||||')
else td_writeln('||||Billions of people say "Thank you."||||');

end;

064

confirm

Variables

toggle.disable_screen, toggle.disable_user_keyboard
YES, NO (constants)

See Also

get_phone, get_date
get_keypress
td_readln
td_readkey, td_keypressed

065

ansi_clrscr

Synopsis

procedure ansi_clrscr;

Description

This procedure will utilize ANSI graphics screen controls clear both the local
and remote screens.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_clrscr;

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_left, ansi_right, ansi_gotoxy, ansi_up, ansi_down,
ansi_erase_line, ansi_color

066

ansi_erase_line

Synopsis

procedure ansi_erase_line;

Description

This procedure will utilize ANSI graphics screen controls to erase to the end
of the current line from the current cursor position on both the local and remote
screens.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_erase_line;

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_left, ansi_right, ansi_gotoxy, ansi_up, ansi_down,
ansi_clrscr, ansi_color

067

ansi_gotoxy

Synopsis

procedure ansi_gotoxy(x, y : integer);

Description

This procedure will utilize ANSI graphics screen controls to place the cursor
at the position x, y on the local and remote screens.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_gotoxy(10, 12);

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_left, ansi_right, ansi_up, ansi_down, ansi_erase_line,
ansi_clrscr, ansi_color

068

ansi_left

Synopsis

procedure ansi_left(move : integer);

Description

This procedure will utilize ANSI graphics screen controls to move the cursor
move spaces left on the local and remote screens.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_left(10);

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_gotoxy, ansi_right, ansi_up, ansi_down, ansi_erase_line,
ansi_clrscr, ansi_color

069

ansi_right

Synopsis

procedure ansi_right(move : integer);

Description

This procedure utilize ANSI graphics screen controls to move the cursor move
spaces right on the local and remote screens.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_right(10);

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_left, ansi_gotoxy, ansi_up, ansi_down, ansi_erase_line,
ansi_clrscr, ansi_color

070

ansi_up

Synopsis

procedure ansi_up(move : integer);

Description

This procedure will utilize ANSI graphics screen controls to move the cursor
move spaces upward on the screen.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_up(12);

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_left, ansi_right, ansi_gotoxy, ansi_down, ansi_erase_line,
ansi_clrscr, ansi_color

071

ansi_down

Synopsis

procedure ansi_down(move : integer);

Description

This procedure utilizes ANSI graphics screen controls to move the cursor
move spaces down on the local and remote screens.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_down(5);

end;

Variables

stats.ansi
toggle.disable_screen

See Also

ansi_left, ansi_right, ansi_gotoxy, ansi_up, ansi_erase_line,
ansi_clrscr, ansi_color

072

ansi_color

Synopsis

procedure ansi_color(blink, intensity, foreground, background : integer);

Description

This procedure will utilize ANSI graphics screen controls to change the
current color on both the local and remote screens. A group of constants has been
made available to the programmer to fill in the necessary variables when calling
this function. These constants are as follows :

blink BLINK_ON, BLINK_OFF
intensity INTENSITY_ON, INTENSITY_OFF

foreground /
backgroundBLACK, RED, GREEN, YELLOW, BLUE,

MAGENTA, CYAN, WHITE

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
ansi_color(BLINK_OFF, INTENSITY_ON, YELLOW, BLACK);
td_writeln('This is solid bright yellow on black.||||');
ansi_color(BLINK_ON, INTENSITY_ON, RED, BLACK);
td_writeln('This is blinking bright red on black.||||');
ansi_color(BLINK_OFF, INTENSITY_OFF, BLUE, GREEN);
td_writeln('This is solid dark blue on green.||||');

end;

Variables

stats.ansi
toggle.disable_screen
BLINK_ON, BLINK_OFF, INTENSITY_ON, INTENSITY_OFF (constants)
BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA,
CYAN, WHITE (constants)

073

ansi_color

See Also

ansi_left, ansi_right, ansi_gotoxy, ansi_up, ansi_down,
ansi_erase_line, ansi_clrscr

074

read_dorinfo

Synopsis

function read_dorinfo : Boolean;

Description

This function is one of the automatic functions, included with TriDoor, that
reads in a on-line door support file, in this case DORINFO1.DEF, and fills in the
stats record with the needed information for door operation. If the file exists and
it successfully read in and converted, the program will return a Boolean TRUE.
If the file is missing, the function will return a FALSE.

If your program fills in the support_path variable with the path to the on-line
door support file, this function will automatically search for it in that directory.
Otherwise it will search the current directory.

To see a copy of these procedures and an explanation on how to create your
own functions for different door support files see the sections entitled
PROGRAMMING WITH TRIDOOR and CREATING YOUR OWN DOOR
SUPPORT.

Example

begin
if (read_dorinfo) then

begin

if (setup_tridoor) then
begin

{* main program here *}

end
else writeln('TriDoor failed to setup communications port!');;

end
else writeln('TriDoor could not find DORINFO1.DEF!');

end;

075

read_dorinfo

Variables

stats (record)

See Also

read_pcboard

076

read_pcboard

Synopsis

function read_pcboard : Boolean;

Description

This function is one of the automatic functions, included with TriDoor, that
reads in a on-line door support file, in this case PCBOARD.SYS, and fills in the
stats record with the needed information for door operation. If the file exists and
it successfully read in and converted, the program will return a Boolean TRUE.
If the file is missing, the function will return a FALSE.

If your program fills in the support_path variable with the path to the on-line
door support file, this function will automatically search for it in that directory.
Otherwise it will search the current directory.

Example

begin
if (read_dorinfo) then

begin

if (setup_tridoor) then
begin

{* main program here *}

end
else writeln('TriDoor failed to setup communications port!');;

end
else writeln('TriDoor could not find DORINFO1.DEF!');

end;

077

read_pcboard

Variables

stats (record)

See Also

read_dorinfo

078

display_file

Synopsis

procedure display_file(file_name : string; line_pause : word);

Description

This procedure will display the file file_name and pause every line_pause
lines will prompt the user for a keypress before continuing. This procedure
displays text on both the local and remote screens.

This procedure now acknowledges ANSI screen controls.

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
display_file('WELCOME.TXT', 23);

end;

Variables

toggle.disable_screen

See Also

none

079

7.0
———————
Advanced Command
Summary

7.0 Advanced Command Summary

The following is a group of commands that are made available, by TriDoor, to the
programmer.

These functions and procedures are automatically executed and handled by TriDoor
and would only be needed by the programmer if he or she was intending to write an
alternate or substitute function or procedure to one of TriDoor's.

083

record_logon_time

Synopsis

procedure record_logon_time;

Description

This function will take the current time and record that as the user's log-on
time and store it in the global variable logon_time.

This function is automatically executed by TriDoor in the setup_tridoor
function.

Example

begin
record_logon_time;

end;

Variables

logon_time

See Also

time_remaining, display_time, time_until_timeout
statusbar_refresh, reset_activity_timer, reset_statusbar_timer

084

time_remaining

Synopsis

 function time_remaining : integer;

Description

This function will return the number of minutes the user has remaining in
their on-line session. In addition to it's primary function, this function also
monitors all secondary time-related functions and handles them as is necessary.

This function monitors user inactivity, and if the user exceeds their inactivity
time limit, and toggle.inactivity_timeout is set to TRUE, the time_remaining
function will set toggle.halt_program to TRUE and display the message stored in
toggle.inactivty_timeout.

This function will also monitor the user's remaining on-line time. If the user's
time has run out and toggle.automatic_dropout has been set to TRUE, the
time_remaining function will set toggle.halt_program to TRUE and display the
message stored in message.out_of_time.

Example

var
time_rem : integer;

begin
time_rem := time_remaining;
td_writeln('You have' + strg(time_rem) + ' minutes left online.||');

end;

Variables

logon_time, inactivity_time
message.out_of_time, message.inactivity_timeout
stats.time
toggle.halt_program, toggle.automatic_dropout, toggle.inactivity_timeout

085
time_remaining

See Also

record_login_time, display_time, time_until_timeout
statusbar_refresh, reset_activity_timer, reset_statusbar_timer

086

display_time

Synopsis

procedure display_time;

Description

This procedure will display the time the user on-line has remaining in their
session. It displays it in the upper-right hand corner of the status bar.

This function can be deactivated by setting the global variable
toggle.disable_time_display to TRUE.

This function is automatically executed by TriDoor.

Example

begin
display_time;

end;

Variables

logon_time, inactivity_time
message.out_of_time, message.inactivity_timeout
stats.time
toggle.halt_program, toggle.automatic_dropout, toggle.inactivity_timeout,
toggle.disable_time_display, toggle.disable_screen

See Also

record_login_time, time_remaining, time_until_timeout
statusbar_refresh, reset_activity_timer, reset_statusbar_timer

087

time_until_timeout

Synopsis

function time_until_timeout : longint;

Description

This function determines and returns the number of seconds until the user has
exceeded their inactivity time-out limit.

If you ever decide to write your own replacements or alternates for internal
TriDoor functions, such as td_readln which give the user an opportunity to sit
for long periods of time without pressing any keys, it is good to check this
frequently.

The easiest way to do this is to simply call on the time_remaining function at
the end of every wait cycle that the user does not press a key. This function
handles all time related functions including inactivity and user time depletion.

The number of seconds of inactivity the user is allowed before time-out is
stored in the global variable inactivity_timeout. The last occurrence of a user
keypress is stored, in seconds, in the global variable activity_log as the number of
seconds from the preceding midnight.

This function is automatically monitored and executed by TriDoor.

Example

var
 task_complete : Boolean;

begin
task_complete := FALSE; (* assume task is not completed *)
while (time_until_timeout > 0) and (not task_complete) do
 begin

(* Task that requires user input here.*)
(* Assigns task_complete := TRUE if user has completed task *)

end;
if (time_until_timeout > 0) then

td_writeln('User is out of time.');
end;

088

time_until_timeout

Variables

inactivty_time, activity_log

See Also

display_time, record_login_time, time_remaining
statusbar_refresh, reset_activity_timer, reset_statusbar_timer

089
statusbar_refresh

Synopsis

function statusbar_refresh : Boolean;

Description

This function is very similar to the time_until_timeout with two exceptions.
Firstly, its purpose is to monitor the time since the status bar had last been
changed, and secondly, it only returns a TRUE if it is time to refresh the status
bar or a FALSE if it is not.

It is also important to note that after the point at which it returns a true, it
automatically resets the counter, so it will return a TRUE every nn seconds. This
interval value is stored in the global variable statusbar_refresh_time.

This function is automatically monitored and executed by TriDoor.

Example

begin
if (statusbar_refresh) then

display_statusbar;
end;

Variables

statusbar_log, statusbar_refresh_time

See Also

record_logon_time, time_remaining, display_time, time_until_timeout
reset_activity_timer, reset_statusbar_timer

090

reset_activity_timer

Synopsis

procedure reset_activity_timer;

Description

This procedure simply resets the user keyboard inactivity timer. This function
is automatically called by TriDoor ANY time a remote user presses a key.
TriDoor does NOT monitor the local keyboard, but all higher-level TriDoor
functions do.

In other words, if you write your own function that monitors Turbo Pascal's
keypressed function and then executes a readkey the inactivity timer will not be
reset, unless you execute reset_activity_timer. (It is possible that you may want
to have it set up this way, depending on the circumstances.)

The number of seconds of inactivity the user is allowed before time-out is
stored in the global variable inactivity_timeout. The last occurrence of a user
keypress is stored, in seconds, in the global variable activity_log as the number of
seconds from the preceding midnight.

This function is automatically executed by TriDoor.

Example

begin
if (buffer_head <> buffer_tail) then (* if ring buffer has an entry waiting*)

reset_activity_timer;
end;

Variables

inactivty_time, activity_log

See Also

record_logon_time, time_remaining, display_time, time_until_timeout
statusbar_refresh, reset_statusbar_timer

091

reset_statusbar_timer

Synopsis

procedure reset_statusbar_timer;

Description

This procedure is the duplicate of reset_activity_timer except that it handles
the status bar timer and not the user inactivity timer.

The last occurrence of a status bar reset is stored, in seconds, in the global
variable statusbar_log as the number of seconds from the preceding midnight.

This procedure is automatically executed by TriDoor.

Example

begin
reset_statusbar_timer

end;

Variables

statusbar_log

See Also

record_logon_time, time_remaining, display_time, time_until_timeout
statusbar_refresh, reset_activity_timer

092

display_statusbar

Synopsis

procedure display_statusbar;

Description

This procedure will display the normal status bar at the bottom of the local
screen. This status bar will display the name of your program, stored in
door_name as well as the name of the user on-line (stats.name), baud rate
(stats.real_baud) of connection and the user's time_remaining in the door.

This procedure is maintained by TriDoor and will always be restored after a
number of seconds set by the programmer in the variable statusbar_refresh_time.
It can also be brought up by a local keypress of [F3].

** Remember that if the variable toggle.disable_screen is set to TRUE, no output
will be displayed on the local console! **

Example

begin
display_statusbar;

end;

Variables

statusbar_refresh_time,
toggle.disable_screen, toggle.disable_time_display

See Also

display_helpbar_1, display_helpbar_2
statusbar_message

093

display_helpbar_1

Synopsis

procedure display_helpbar_1;

Description

This procedure will display the first of two help bars at the bottom of the
screen with a list of some of the command-keys available to the local SysOp.
This procedure is automatically monitored by TriDoor and activated by a local
keypress of [F1].

** Remember that if the variable toggle.disable_screen is set to TRUE, no
output will be displayed on the local console! **

Example

begin
display_helpbar_1;

end;

Variables

toggle.disable_screen

See Also

display_helpbar_2, display_statusbar
statusbar_message

094

display_helpbar_2

Synopsis

procedure display_helpbar_2;

Description

This procedure will display the second of two help bars at the bottom of the
screen with a list of some of the command-keys available to the local SysOp.
This procedure is automatically monitored by TriDoor and activated by a local
keypress of [F2].

** Remember that if the variable toggle.disable_screen is set to TRUE, no
output will be displayed on the local console! **

Example

begin
display_helpbar_2;

end;

Variables

toggle.disable_screen

See Also

display_helpbar_1, display_statusbar
statusbar_message
, the program will return a Boolean TRUE. If the file is missing, the function
will return a FALSE.

If your program fills in the support_path variable with the path to the on-line
door support file, this function will automatically search for it in that directory.
Otherwise it will search the current directory.

To see a copy of these procedures and an explanation on how to create your
own functions for different door support files see the section entitled
"PROGRAMMING WITH TRIDOOR".

095

display_helpbar_2

Example

begin
if (read_dorinfo) then

begin

if (setup_tridoor) then
begin

{* main program here *}

end
else writeln('TriDoor failed to setup communications port!');;

end
else writeln('TriDoor could not find DORINFO1.DEF!');

end;

096

special_key_check

Synopsis

procedure special_key_check;

Description

This procedure is executed when a local function key or special key is
pressed. These keys ([F1], [ALT-F4], [PgDn], etc.) actually generate TWO
keystrokes, the first one having a value of zero. If you create a procedure or
function as a substitute or alternate to one of the TriDoor functions that require a
fair amount of time or waits for keystrokes from the local or remote user, you
must do the following in order to make sure that these special local keystrokes are
still acknowledged :

1> If a key is pressed, check to see if it is a NULL character. (chr(0), ord
value of 0)

2> If the key that was pressed was, in fact, a null character, call the
special_key_check procedure. This will automatically handle the keypress
and then return to the calling procedure.

3> If it is not a null character, treat it as a normal one.

097

special_key_check

Example

var
done : Boolean;
kb_hit : character; {* keyboard character *}

begin {* do_some_task *}

while (not done) and (not exit_door) do
begin

{ *** procedure body here *** }

if keypressed then
begin

kb_hit := readkey;
if (kb_hit = chr(0)) then

special_key_check
else

{ ** handle keypress as normal **}

end;

end;

end; { do_some_task }

If you do not do this special functions, like status bar help menus, chat mode,
and DOS shell will not function within your procedure.

Variables

none

See Also

none

098

chat_mode

Synopsis

procedure chat_mode;

Description

This is a a built-in, full-feature, multi-color (if the user's ANSI is enabled by
having set the global variable stats.ansi to TRUE), word-wrapping, chat mode.

Every door you write incorporating TriDoor will automatically have this nice
chat mode built right in to it, thus allowing the SysOp to communicate with the
on-line user easily and efficiently.

This procedure is automatically handled by TriDoor and is activated by
pressing [F10] on the local keyboard.

** Remember that if the variable toggle.disable_screen is set to TRUE, this
function will not execute! **

Example

begin
chat_mode;

end;

Variables

stats.ansi
toggle.disable_screen, toggle.disable_user_keyboard

See Also

none

099

user_page

Synopsis

procedure user_page;

Description

This procedure will allow the SysOp to page the on-line user. Yes, you read
correctly. Oftentimes the user will walk away from the computer for one reason
or another and if you feel the need to get his or her attention, this procedure will
alert the user to that fact.

When called, user_page will display the messages stored in
message.user_being_paged_1 and message.user_being_paged_2, and then beeps
until the user answers the page or the SysOp aborts it.

It is not advisable to call this procedure from within the program since it will
then bring the user into chat, from which only the SysOp can release them.

** Remember that if the variable toggle.disable_screen is set to TRUE, this
function will not execute! **

Example

begin
user_page; {* remember, this is not advisable *}

end;

Variables

toggle.disable_screen,
See Also

100

artificial_line_noise

Synopsis

procedure artificial_line_noise;

Description

This procedure will generate a brief spurt of feigned line noise. While this is
a bit silly, it is unfortunately sometimes a nice thing to have when you need to
get rid of an annoying user without making yourself look bad.

The artificial_line_noise procedure is automatically handled by TriDoor and
is activated by pressing [ALT]-[F4] on the local keyboard.

** Remember that if the variable toggle.disable_screen is set to TRUE, no
output will be displayed on the local console! **

Example

begin
artificial_line_noise;

end;

Variables

toggle.disable_screen

See Also

none

101

dos_shell

Synopsis

procedure dos_shell;

Description

This procedure will drop the SysOp to DOS while leaving the user on-line.
This is an extremely useful function for any SysOp, but will require the
programmer to do some clever memory management.

You must use the $M compiler directive at the beginning of each of your door
programs to allow space in memory for both your door and the DOS shell to
function. For further information on the $M compiler directive, see the
EXAMPLE.PAS program included with TriDoor, and most importantly, consult
your Turbo Pascal manual.

TriDoor will automatically determine which shell you are using
(COMMAND.COM, 4DOS.COM, etc.) and run that whenever [F5] is pressed
on the local keyboard.

The dos_shell function is automatically handled by TriDoor and is activated
by pressing [F5] on the local keyboard.

** Remember that if the variable toggle.disable_screen is set to TRUE, this
function will not execute! **

Example

begin
dos_shell;

end;

Variables

toggle.disable_screen

See Also

none

102

8.0
———————
Accessible Global
Variables and Constants

 8.1 Accessible Global Variables
 8.2 Accessible Global Constants

8.0 Accessible Global Variables and Constants

8.1 ACCESSIBLE GLOBAL VARIABLES

Here is a list of global variables that may be accessed at any time during normal
program operation. Remember that the stats record must be filled in before you run the
setup_tridoor function.

For information on how to handle records, consult your Turbo Pascal manual.

All variables with a "*" before them are already defined upon boot-up but may
be/may need to be changed to suit your needs. In most cases this is done to certain
norms and you may not need or want to alter them during your program. In other cases,
it is done as a default so you will at least have something there if you decide to write a
quick and simple program.

All variables with a "#" before them are automatically maintained by TriDoor and
certain TriDoor functions which you will only have to call upon if you write your own
communications functions or alternates to TriDoor functions.

The following function is the stats record that must be filled in before calling the
setup_tridoor function. The functions read_pcboard and read_dorinfo automatically fill
these values in from the door support files, DORINFO1.DEF and PCBOARD.SYS,
respectively.

stats_record = { ** This is the actual {stats} record type ** }
record

name : string[50]; { name of user currently on-line }
real_baud, { actual baud rate (as seen by user) }
lock_baud : longint; { locked baud rate (comp. to

modm)}
time : integer; { time user has left in door today }
comstr : string[20]; { comstring - format 1200,N,8,1' }
comport : integer; { communications port- COM1,COM2, etc... }

 comp_interrupt, { communications port interrupt (IRQ) }
comp_dbits, { data bits (7,8) }
comp_sbits, { stop bits (normally 1) }
comp_parity : integer; { parity (ODD,EVEN,NONE) }

 ansi : Boolean; { ANSI graphics commands enabled if TRUE }
end;

106

8.1 Accessible Global Variables and Constants

The following is a record of messages that are displayed on both the
local and remote screens at certain times during program operation. All of
these messages have default settings, but can be changed at any time.

message_record = { ** This is the actual {message} record type ** }
record { Message displayed when... }

* enter_chat_mode, { entering chat mode }
* exit_chat_mode, { exiting chat mode }
* user_being_paged_1, { user being paged (1 of 2) }
* user_being_paged_2, { user being paged (2 of 2) }
* sysop_aborted_page, { SysOp aborts user pager }
* user_answered_page, { user answers user page }
* inactivity_timeout, { user is inactive and dropped out }
* out_of_time, { user runs out of time for session }
* forced_dropout : string; { user is forced out by SysOp }

end;

The following is a record of Boolean (TRUE/FALSE) toggles which help you to
control TriDoor in some case, and help TriDoor keep track of itself in others.

toggle_record = { ** This is the actual {toggle} record type ** }
record { When set to TRUE... } {def}

* td_writeln_echo, { td_writeln will echo to local screen } { T }
user_local, { on-line user is local }

*# disable_screen, { TriDoor will not write to local scrn } { F }
* clear_disabled_screen, { clears local screen when disabled } { T }
*# disable_queue, { disables the print queue } { F }
*# disable_time_display, { will not show time in statusbar } { F
}
*# disable_user_keyboard, { remote user keyboard strokes ignored } { F }
* inactivity_timeout, { drops out if inactivity limit reached } { T }
* automatic_dropout, { drops out if halting condition is met } { T }

 XOFF, { XON/XOFF flow control status register }
*# halt_program, { top priority halting condition } { F }
*# in_chat_mode : Boolean; { whether or not in chat mode } { F }

end;

107
8.1 Accessible Global Variables and Constants

Most of these toggles are all pre-assigned by TriDoor, and some of them (like
toggle.disable_time_display and toggle.disable_user_keyboard) are changed by TriDoor
from time to time within the normal operation of your door. The def column are
representations of the default values of these toggles when a program using TriDoor is
started; T=TRUE, F=FALSE.

The rest of the global variables are just standard variables, not record variables, that
may be accessed at any time by the programmer.

var
stats : stats_record; { main stat_record r ecord }

* message : message_record; { main message_record record }
* toggle : toggle_record; { main toggle_record record }

*# direct_xypos : word; { screen memory position aft. }
{ direct_gotoxy has been called. }

*# logon_time : word; { logon time of user (in minutes) }
*# screen_mode : word; { screen memory position }
*# statusbar_refresh_time, { time until status bar is re-drawn }
*# inactivity_time : integer; { time until user is timed out }

 { (^both of these are in seconds^) }

*# statusbar_log, { record of time statusbar was changed }
*# activity_log : longint; { keeps record of last user keypresses }

 { (^both of these are in seconds^) }

 support_path, { path to door support files }
*# queue_cache : string; { queue string for td_writeln procedure }

 door_name : string[80]; { name of program running }

108
8.0 Accessible Global Variables and Constants

8.2 ACCESSIBLE GLOBAL CONSTANTS

The following is a list of global constants available to the programmer in order to
make some tasks a little easier. They cannot be re-assigned like accessible global
variables can; they have been pre-assigned to actual addresses and values.

• EVEN, ODD, MARK, SPACE, NONE (parity settings)

• COM1, COM2, COM3, COM4 (comport settings)

• IRQ2, IRQ3, IRQ4 IRQ (settings)

• BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE
(ANSI graphics color settings)

• INTENSITY_ON, INTENSITY_OFF, BLINK_ON, BLINK_OFF
(additional ANSI graphics settings)

• TDVER, TDDATE (active TriDoor version and date)

• CR, BS (carriage return and destructive backspace)

• YES, NO (used for confirm function)

• CAPS_ON, CAPS_OFF, CODE_ON, CODE_OFF
(used for td_readln procedure)

• ECHO_ON, ECHO_OFF (used for td_outstrg, td_outchar)

All of these constants can be used in normal programming. For example:

td_writeln('This program is using V'+TDVER+' of TriDoor');
stats.comport := COM1;
stats.comp_interrupt := IRQ4;

109

9.0
———————
Reserved Words

9.0 Reserved Words

The following list of words are reserved (used by TriDoor) and not to be re-defined
by any program incorporating TriDoor as a conflict will arise that will result in non-
functionality, to some degree, or possibly even a complete lock-up of the final resulting
program or software.

tridr55? tridr60? TDVER TDDATE CR YES
NO BLACK YELLOW RED MAGENTA CYAN
WHITE GREEN BLUE BLINK_ON BLINK_OFF CAPS_ON
CAPS_OFF CODE_ON CODE_OFF MAXIMUM ECHO_ON ENABLE1
ECHO_OFF IER IIR LCR MCR LSR
MSR RLS RDA TRE MSI PIC
EOI PICMASK ENABLE2 DISABLE1 DISABLE2 BIOSSEG
KEYHEAD KEYTAIL EVEN ODD MARK SPACE
NONE COM1 COM2 COM3 COM4 IRQ2
IRQ3 IRQ4 buffptr buffrec

INTENSITY_ON INTENSITY_OFF stats_record pcboard_record
message_record toggle_record stats message toggle direct_xypos
logon_time comintvec screen_mode user_local
XOFF halt_program in_chat_mode inactivity_time
statusbar_log activity_log support_path queue_cache
buffer_top buffer_head buffer_tail oldint exitsave
door_name comint setup_comport setup_parameters
setup_buffer clear_buffer tridoor_shutdown get_display_type
cts_true set_cts strg td_upcase
capitalize record_logon_time time_remaining display_time
statusbar_refresh carrier_detect exit_door setup_tridoor
td_outstrg td_outchar td_keypressed td_readkey
td_readln td_writeln td_clrscr get_phone
get_date get_keypress confirm ansi_gotoxy
ansi_left ansi_right ansi_up ansi_down
ansi_erase_line ansi_color ansi_clrscr direct_char

113

9.0 Reserved Words

direct_strg display_statusbar display_helpbar_1 read_dorinfo
read_pcboard chat_mode display_helpbar_2 user_page
dos_shell display_file command_file

statusbar_refresh_time shut_down_comport time_until_timeout
reset_activity_timer reset_statusbar_timer statusbar_message
artificial_line_noise

114

10.0
———————
Acceptable Credit in
Programs and
Documentation

10.0 Acceptable Credit in Programs and Documentation

Any program compiled using the TriDoor package must give proper credit to
Triumph Software and TriDoor in the documentation. This credit must appear on the
title page of your documentation, or if such a page does not exist, it must appear with the
credits of your program. Credits are such things as "Program written by...", "Program
design..." etc. If neither of these things appear in your documentation, then credit must
appear within the first three pages of the document. If no document is to be included
with your package, a separate file, called README.DOC must be included with the
package and within that file the appropriate credit to Triumph Software and TriDoor
must be placed.

A disclaimer must also be included in the documentation immediately following this
credit stating that Triumph Software is not affiliated with you or your company in any
way and that Triumph Software can not be held responsible for any programs created
using the TriDoor package.

Acceptable minimum credit to Triumph Software and TriDoor is as follows :

TriDoor Communications and On-line Door Driver
(c)1992,1993 Triumph Software, All Rights Reserved.

(508)263-4247 / (508)263-8420

Note that this is the minimal credit required for TriDoor, but we would like to
encourage a more verbose credit in your documentation in order to broadcast further
about Triumph Software and TriDoor. Remember, the more copies we sell, the cheaper
TriDoor becomes and the more revisions and improvements we will make. Help to
continue to support the shareware concept!

Triumph Software reserves the right to temporarily revoke registration privileges
until proper credit for Triumph Software is given in any software/programs created using
the TriDoor unit.

118
10.0 Acceptable Credit in Programs and Documentation

The following lines will AUTOMATICALLY appear VERY BRIEFLY upon bootup
of any program using a registered copy of TriDoor :

TriDoor Vx.xx - On-line Door and Communications Support
(c)1993 by Triumph Software, All Rights Reserved.
Reg No : xxxxxxxxxx Reg To : John Q. Programmer

A special copy of the package without this notice may be obtained by special
arrangements with Triumph Software. Different licensing agreements and disclaimers
may apply.

Removal of this notice or any of it's information without prior and valid written
approval by Triumph Software voids the registration of the TriDoor package and any
privileges that go along with said registration.

119

11.0
———————
Who to Contact

11.0 Who to Contact

Did your machine curse aloud in protest of our software? Are files missing from the
release you obtained? Did raging demons erupt from the center of the earth, bursting
through your floor, and take away your dog? Did Valkaries cart your brother off to
Valhalla to serve as their hero and love slave, never to return?

Have you obtained the latest version of this software?

Well, for some of those problems you may have to contact someone else- (perhaps
Ghostbusters™, we can't do EVERYTHING you know!) However, we can help solve
your Triumph Software problems. If you have difficulties, questions, need a new release
of our software, want an upgrade or even just have a bit of feedback for us, please feel
free to give us a ring or send us an Internet message.

Triumph Software Voice Business Line : (508)263-4247

If we are not at work, please try us at home.

Christopher M. Russo Voice : (508)263-8420
Jeremy H. DuBois Voice : (508)263-7004

(716)274-0227

You may also contact us on the Internet at the following address :

Jeremy DuBois : jer@blaise.cif.rochester.edu

We are also looking out for potential support boards and beta-testing systems, so if
you have a system and are interested, make sure you inform us of your desire and
eligibility.

123

12.0
———————
History of TriDoor

12.0 History of TriDoor

TriDoor and it's communications support is the end result of almost four years of
effort by both Jeremy DuBois and myself. (Christopher M. Russo) We started one rainy
day when Jeremy had informed me that he had managed to write some basic polling
Pascal communications routines. As Jeremy already had a bulletin board system
running at that time, I suggested that we write an on-line game for it.

And that is when it all began. We went from writing a semi-complete and not-too-
awful on-line game to writing DoorBase, our first version of an on-line door supporting
unit. Then I wrote a game on my own- Monopolistic Competition, followed shortly
thereafter by Monopolistic Competition II which was running off of a newer, but still
bedraggled version of DoorBase.

Then one day while trying to write a terminal program, we realized that the
communications routines that Jeremy had made were simply not fast enough to handle all
the tasking necessary, and at anything above 2400 baud, was a miserable failure. Thus,
Jeremy set out once again to create newer, faster, interrupt driven routines.

I had quite a lot of trouble dealing with the newer routines for reasons which, I admit,
are beyond my knowledge. After time and perseverance, however, I mastered the new
routines and re-wrote the newest version of DoorBase, now called TriDoor in the interest
of our newly-founded company.

And thus, I present to you said software and complete documentation for the easy
usage and incorporation of communication and door support in your Pascal programs for
QuickBBS and clones. I strongly believe that using TriDoor is the easiest, most user-
friendly way of writing doors and on-line games available today.

127

